Field guide

Control and adjustment of portable flue gas analysers

With practical advice, tips and tricks
Introduction

This guide is intended for users of Testo flue gas analysers who are responsible for their control and adjustment by means of test gases on the basis of particular requirements in respect of quality or accuracy.

It contains all the answers to questions which have cropped up on this subject at Testo over the course of time.

For those users who do not wish to explore this subject in greater depth, Testo offers a regular control and adjustment service (including calibration protocol) almost anywhere in the world.

This guide will help users decide which type of control they should choose.

It also offers information that would go far beyond the scope of the operating instructions for analysers.

What is missing? What has not been dealt with intensively enough? We welcome your ideas, amendments and suggestions for how this guide can be improved. They will be considered in the next issue.

The Board of Directors

Burkart Knospe
Wolfgang Hessler
Martin Schulz
Table of contents

<table>
<thead>
<tr>
<th>Chap.</th>
<th>Contents</th>
</tr>
</thead>
</table>
| 1 | Definition of terms
e.g. calibration/adjustment/alignment/inspection/zero point etc. |
| 2 | The principles of test gas
Advice from manufacturers of test gases, ppm/vpm/mgr/m³, safety advice, websites, test gas combinations |
| 3 | Hardware for adjustment (material, design)
Gas admission - notes |
| 4 | Adjustment/alignment
4.1 Factory adjustment of Testo flue gas analysers
4.2 Adjustment/readjustment of Testo units/options for the customer
4.3 Adjustment intervals
4.4 Recommended gas concentrations
4.5 Cross-sensitivity |
| 5 | Step-by-step example |
| 6 | Troubleshooting |
| 7 | Testo flue gas analysers
Overview
Heating
Industry |
| 8 | Index |
| 9 | Testo addresses |
| | Requesting information |
1. Definition of terms

Calibration
The determination, under prescribed conditions, of the mutual association between the indication of the analyser on the one hand and the relevant values of a variable (in this case test gas) represented as a measurement standard on the other. Result of a calibration: Error of measurement.

Adjustment or alignment
Elimination of the falsifying systematic error of measurement for the intended application, e.g. readjustment with test gas in the event of deteriorating sensor sensitivity.

Standardisation
The standardisation of a measuring device comprises the quality inspections and identification markings to be carried out in accordance with standardisation regulations (e.g. standardisation laws, regulations on weights and measures). It is in actual fact impossible to standardise a flue gas analyser.

Error of measurement (accuracy)
Indicated measurement minus the true value of the measured variable. This can be represented in a variety of ways:
- relative deviation from the measured value
- deviation relative to the limit value of the measuring range
- absolute indication, for instance as vol. % or ppm.

Reproducibility (repeat accuracy)
Standard deviation of a series of measured values from measurements performed at short intervals of time and carried out according to a defined measurement procedure by the same operator on the same parts, using the same equipment and at the same place.

Linearity
Deviation from the correct values of the measured values displayed across a measuring range.
Zero point
What the sensor signal unit displays in the absence of the gas to be verified (= “target gas”).

Slope/sensitivity
Sensor signal per admitted (unit of) concentration. This is determined in adjustment, calibration and is stored for later measurements.

Measuring range
This is the concentration range in which the target gas can be measured by the sensor/unit with the specified accuracy.

Cross-sensitivity
The characteristic of sensors to react not only to the target gas to be verified, but also to other gases.

Response time
Period of time the sensor/unit needs in order to react to the introduced concentration with a stable signal/indication. In practice, t_{xy} times are given, e.g. T_{90} time. This is the length of time until 90 % of the introduced concentration is displayed.

Oxidation
The combination of elements with oxygen. In gases, for instance, the oxidation of NO produces NO$_2$.

Absorption
This is understood to mean the penetration of gases or gas mixtures into liquids or solid substances. NO$_2$, for instance, is absorbed/fixed by rubber or silicone hoses.

Adsorption
Adsorption takes place if gases are held solely by the surface forces when they come into contact with a solid substance, e.g. the inside wall of a hose. These “captured” gases are then given off again uncontrolledly (e.g. the presence of NO$_2$ is indicated even though no more NO$_2$ gas is applied).
2. The principles of test gases

Test gases are used for the calibration and adjustment of flue gas analysers. Different gas mixtures are required according to the device, the configuration and the sensors.

Gas mixtures:
Gas mixtures are homogeneous mixtures of different types of atoms and molecules. A large number of gases and possible combinations are available. However, the production of gas mixtures is constrained by the physical and chemical properties of the components and by aspects to do with safety.

The effects (cross-sensitivity) on other sensors in a fully-configured analyser with 5 or 6 sensors result from the use of several bottles with single concentrations (e.g. 100 ppm NO, residual N₂).

Components:
The gas constituents CO, O₂, N₂ etc. of a mixture are known as the components. Information on them can be found on the analysis certificate.

Carrier gas/basic gas:
This gas is the main constituent of the mixture. The main carrier gas used is nitrogen (N₂) or synthetic air.

Indication of content/concentration:
The amount of substance that does not depend on pressure and temperature. The common units are ppm (parts per million) or % (parts per 100). Conversion: 1 % = 10,000 ppm.

Other common indications are the volume vpm (volume per million) or mass kg/m³. However, these are dependent on pressure and temperature and require the indication of the standard operating conditions, for instance the standard conditions of temperature 0 °C = 273.15 K and pressure = 1.013 hPa.
In practice, many mixtures can be regarded more or less as a mixture of ideal gases in which the same amount of substance of the respective components takes up the same volume. This means that the amount of substance in ppm and the volume in vpm are equivalent in this approximation.

Accuracy of test gas/certificate:
Test gases can be obtained in a variety of accuracy classes. The achievable precision depends on the type and the content of the desired components.

For analysers, the test gas used usually has an analysis tolerance (does not correspond to the manufacturer’s tolerance) of 2 % of the measured value.

For the purposes of traceability, it is important that test gases with a manufacturer’s certificate are used.

Information on the analysis certificate:

- **Production tolerance**
 This is the maximum permitted deviation of a component (actual value) from the prescribed target value in the manufacture of the gas mixture.

- **Analysis tolerance**
 After the mixture has been produced, the exact composition is determined with restorative methods of analysis. The analysis tolerance gives the maximum deviation of the measured value indicated on the certificate from the true value of a component.

- **Stability and period of use**
 Depending on their type, gas mixtures cannot be stored and used indefinitely. This “use by” date must be indicated on the analysis certificate. Two years is typical for standard gas mixtures.

- **Filling pressure and minimum pressure of use**
 The filling pressure corresponds to the bottle pressure of a new bottle at the reference temperature. The minimum pressure of use must not be underused because stable concentrations are no longer guaranteed.
- **Storage temperature**
 The storage temperature should be observed in order to prevent the gas mixture from changing over time and to avoid adsorption effects if temperatures are too low.

Test gas containers:
Test gases are available in pressurised gas cylinder bottles from specialist gas manufacturers. In Europe the standard bottle sizes have volumes of 50, 40, 10 and 2 litres.

These bottles are bought on a rental/money-back basis. Smaller aluminium bottles are also available. See Testo’s calibration bottles.

The typical standard filling pressure of the larger steel bottles is about 150 or 200 bar. In a 10-litre bottle, this means a useful volume of 1500 litres of gas.

For portable flue gas analysers with a flow rate of 1.0 to 1.2 l/min, it is assumed that 5 to 6 litres of gas will be required per calibration/adjustment (for each sensor) in the case of single gases.

For the above 10-litre bottle, this is enough for about 300 controls/adjustments. When determining the optimal bottle size, it must also be remembered that the maximum period of use of the test gas is around 2 years. The test gases should definitely not be used any more after 2 years, regardless of how much is left in the bottle.

Test gas combination - multiple or single gases?
A single gas is taken to mean a gas mixture of the mixed substance and a carrier gas (residual gas). Example: 300 ppm CO, residual nitrogen (N₂).

Multiple gases contain more than one of the desired components (maximum 4). However, it must be remembered that not all combinations are possible.

Multiple gases are also normally more expensive, and some of them have a shorter period of use. The advantage of multiple gases is the reduction in the number of bottles and thus simpler handling. Recommendation: Manufacturers hold standard com-
Batches (mixes) in stock. These standard concentrations should be preferred in the event of purchase.

If using multiple gases, it is also important to note any cross-sensitivities of gas sensors (see Point 4.5). Example: An SO₂ sensor with NO₂ cross-sensitivity cannot be adjusted using mixed gas containing NO₂.

Safety advice for handling test gases:

Operations with test gases demand particular attention with regard to safety. Please refer to TRGS 280 (Operation of pressurised gas vessels).

Important safety aspects - an overview (not complete):

- Gas bottles must always be protected against falling over, e.g. by means of chains or belts.
- Test gas bottles must only be stored and used in well-ventilated rooms or under venting. Danger of poisoning.

The maximum working concentration and its short-time value must not be exceeded.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Threshold limit value</th>
<th>Short-time value</th>
<th>Short-time value duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>30 ppm</td>
<td>60 ppm</td>
<td>30 min</td>
</tr>
<tr>
<td>CO₂</td>
<td>5 000 ppm</td>
<td>1 %</td>
<td>60 min</td>
</tr>
<tr>
<td>NO</td>
<td>5 ppm</td>
<td>10 ppm</td>
<td>5 min</td>
</tr>
<tr>
<td>NO₂</td>
<td>5 ppm</td>
<td>10 ppm</td>
<td>5 min</td>
</tr>
<tr>
<td>SO₂</td>
<td>2 ppm</td>
<td>4 ppm</td>
<td>5 min</td>
</tr>
<tr>
<td>NH₃</td>
<td>50 ppm</td>
<td>100 ppm</td>
<td>5 min</td>
</tr>
<tr>
<td>H₂S</td>
<td>10 ppm</td>
<td>20 ppm</td>
<td>10 min</td>
</tr>
</tbody>
</table>
- With explosive gases, note the explosion limit:
 methane 5 %, propane 2.1 % and hexane 1 %.
- Additional regulations must be observed when transporting
 (e.g. by car, aircraft etc.).

Supply sources for test gases:

The following list of suppliers of test gases is not necessarily
exhaustive and does not in any way constitute a recommendation:

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Website / e-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messer</td>
<td>www.spezialgase.de</td>
</tr>
<tr>
<td>Air Liquide</td>
<td>www.airliquide.com</td>
</tr>
<tr>
<td>Praxair</td>
<td>www.praxair.com</td>
</tr>
<tr>
<td>British Oxygen</td>
<td>www.boc.com</td>
</tr>
<tr>
<td>Westfalen AG</td>
<td>www.westfalen-ag.de</td>
</tr>
<tr>
<td>Realgas</td>
<td>e-mail: real-gas@t-online.de</td>
</tr>
<tr>
<td>Chemogas N.V.</td>
<td>www.chemogas.com</td>
</tr>
<tr>
<td>Air Products</td>
<td>www.airproducts.com</td>
</tr>
<tr>
<td>Spectra Gases</td>
<td>www.spectra-gases.com</td>
</tr>
</tbody>
</table>
3. Hardware for adjustment and control (material composition)

The materials in the hardware that is used must satisfy the following criteria:

The pressure reducer fittings and pipes to and from the gas bottles should be made of stainless steel (reason: aggressive, corrosive gases). In the case of bottles with a brass outer thread (e.g. for CO, CO₂), the pressure regulator can be made of brass for reasons of cost.

In the case of reactive gases such as NO₂, SO₂, the hose material used must have a negligible level of absorption. Recommended materials: Teflon® (PTFE), Viton®, Tygon® or C-Flex®.

Admitting gas into an analyser

Gas should be admitted into the flue gas analyser unpressurised if at all possible. Ideally, a bypass with indication of the test gas overflow will be used for admission (measuring range 0...2 litres/minute). This gas flow meter (flowmeter) will help to ensure both that no ambient air is taken in and that test gas is not unnecessarily “wasted” through the bypass outlet.
Alternatively, the test gas can be applied directly without a bypass by using a precision pressure regulator.

![Diagram of gas adjustment using a precision pressure regulator](image)

Fig.: Gas adjustment using a precision pressure regulator

With this method, the pressure of the test gas must be < 30 hPa. Excessive pressure will lead to incorrect results. The ideal recommended maximum pressure at the gas inlet is 20 hPa. If necessary, the differential pressure of the analyser can be measured in order to check the gas pressure.

General information

Before any gas adjustment/calibration, the devices and the gas routes from the test gas bottles must be checked for leaktightness. To this end the gas inlet is sealed up, for instance, and an indication of < 0.03 l/min in devices with integrated flow measurement is achieved.

In the case of gases with absorption effects such as NO₂ and SO₂, the test gas should be admitted via the tip of the probe. This ensures that absorption effects in the gas route are compensated via this gas adjustment so that the real gas measurements are as precise as possible.
Special advice for the adjustment process:

- Make sure that the ambient temperature remains the same throughout gas adjustment.
- Wait until the devices have warmed up (e.g. about 30 minutes for the testo 350 M/XL).
- To ensure the greatest possible accuracy, in the ideal case the same ambient conditions should prevail during gas adjustment as during real gas measurement.
- Do not choose a test gas concentration that is too low for the slope adjustment. See Point 4.4 for a recommendation.
- The zero point and slope value must be stable before adjustment is started.
- With mixed gases, allow for the influences due to cross-sensitivities. It may be that the corresponding cross-sensitivity also has to be adjusted.

Example of cross-sensitivity adjustment with the testo 360:
SO₂ sensor cross-sensitivity to NO₂. In the first step the SO₂ and the NO₂ sensor must be properly adjusted (readjustment may be necessary). In the second step the crossing gas NO₂ is admitted to the SO₂ sensor and its cross-sensitivity is adjusted. The test gas concentrations should be adapted to the concentrations in the real gas if at all possible (if within the Testo recommendation for slope adjustment).
4 Adjustment/alignment

4.1 Factory adjustment at Testo
Flue gas analysers

Every flue gas analyser runs through a computerised adjustment and test cycle during production or after repair/servicing at Testo, during which a wide variety of test gases are applied, during this operation the sensors and the unit are gone over “with a fine-toothed comb”.

In total up to 17 different gas mixes are used at Testo, depending on the type and configuration of the device. The different gas mixes are required both for adjustment and for the subsequent control. This is carried out at different concentrations to those used in the adjustment. The other adjustment points (slope points) are chosen in such a way that the unit can be used across the entire indicated measuring range and so that universal applicability in practice is guaranteed without any additional adjustment being required. The result of the test gas control with other concentrations than in the adjustment is documented on the adjustment protocol. This adjustment protocol (= calibration protocol) is enclosed with every unit.
Photograph: Calibration protocol for the testo 350 XL after leaving the factory
Test gas concentrations used for factory calibration
(As at August 2003)

<table>
<thead>
<tr>
<th>Calibration gas*</th>
<th>testo 325</th>
<th>testo 325 M</th>
<th>testo 325 XL</th>
<th>testo 300</th>
<th>testo 300 XXL</th>
<th>testo 350 M/XL</th>
<th>testo 360</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO 0...10,000 ppm</td>
<td>400...1,000 ppm CO</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CO<sub>low</sub> 0...500 ppm</td>
<td>300...400 ppm CO</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CO<sub>high</sub> 0...40,000 ppm</td>
<td>5,000 ppm CO</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CO 0...2,000 ppm</td>
<td>700 ppm CO</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NO (standard) 60...800 ppm NO</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NO<sub>low</sub> 40...300 ppm NO</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NO<sub>2</sub> 100...200 ppm NO<sub>2</sub></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SO<sub>2</sub> 1,000...2,000 ppm SO<sub>2</sub></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>H<sub>2</sub>S 100...200 ppm H<sub>2</sub>S</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HC (C<sub>x</sub>H<sub>y</sub>) 4,000...5,000 ppm CH<sub>4</sub></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CO<sub>2</sub> 15...40 Vol.%</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

* Residual N₂ unless otherwise indicated

For the subsequent control, other concentrations of test gases are used and documented in the calibration protocols. In general, the specifications (accuracies) specified in the documents such as the brochure or operating instructions must be met in the control with test gas.
4.2 Adjustment/readjustment with Testo devices - options for the user

Most Testo flue gas analysers offer the user the option of controlling or adjusting the device by means of calibration gases. To keep this as simple and reliable as possible, a 1-point recalibration ("recal") is carried out. This recalibration can be used for:

- Narrowing the measuring range down to specific requirements (increasing the accuracy for a certain measuring range)
- "Tightening" the sensor signal after a loss of sensitivity (eliminating sensor ageing).

The zero point is automatically checked by the measuring instrument in fresh air during the ON phase. Separate zero point correction is not required in electrochemical measuring cells, unlike optical sensors, because the zero point is extremely stable.

Since test gases are absolutely essential for every readjustment and calibration, in most countries Testo offers a control, readjustment and calibration service in its own, well-equipped laboratory.
The advantages of using this service are:
- there is no need to stock test gases
- necessary repairs and/or service work can be carried out at the same time
- a “neutral” certificate (calibration protocol) is obtained
- it is inexpensive, since the user does not need to invest in gases etc.

4.3 Adjustment intervals

When and how often a control should be performed with test gas depends on the accuracy requirements and on the traceability of the measurement results.

In official measurements (TA air, EPA), for instance, it is a requirement that a control be performed and documented before every measurement.

For those areas not regulated by legislation and other rules, the following recommendations for test gas control and adjustment apply:

1 x per year
Normal use, concentration in the lower third of the measuring ranges, no particular requirements regarding accuracy.

2 - 4 x per year (every 3 to 6 months)
More frequent use, longer-lasting measurements (over several hours), concentration up to 2/3 of the measuring ranges, accuracy is quite important.

more than 12 x per year (monthly)
Daily use, depends very much on the measured values, high concentrations, continuous measurements lasting several days, accuracy/comparability is extremely important.
4.4 Recommended gas concentrations

In the ideal scenario, test gas concentrations in the range of the measured flue gas concentrations would be used for adjustment ("recal"). However, limits must be set in the lower and upper measuring range.

1.) The smallest feasible test gas concentrations for adjustment are:

<table>
<thead>
<tr>
<th>Minimum gas concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
</tr>
<tr>
<td>CO_{low}</td>
</tr>
<tr>
<td>NO</td>
</tr>
<tr>
<td>NO_{low}</td>
</tr>
<tr>
<td>H_{2}S</td>
</tr>
<tr>
<td>SO_{2}</td>
</tr>
<tr>
<td>NO_{2}</td>
</tr>
<tr>
<td>HC</td>
</tr>
<tr>
<td>CO_{2}</td>
</tr>
</tbody>
</table>

2.) The smallest test concentrations for the control are:

<table>
<thead>
<tr>
<th>Smallest gas concentration</th>
<th>In comparison: detection limits of testo 350 M/XL</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_{2}</td>
<td>0.5 ... 20.0 vol.%</td>
</tr>
<tr>
<td>CO</td>
<td>10 ppm</td>
</tr>
<tr>
<td>CO_{low}</td>
<td>5 ppm</td>
</tr>
<tr>
<td>NO</td>
<td>10 ppm</td>
</tr>
<tr>
<td>NO_{low}</td>
<td>5 ppm</td>
</tr>
<tr>
<td>H_{2}S</td>
<td>10 ppm</td>
</tr>
<tr>
<td>SO_{2}</td>
<td>10 ppm</td>
</tr>
<tr>
<td>NO_{2}</td>
<td>10 ppm</td>
</tr>
<tr>
<td>C_{x}H_{y}</td>
<td>4,000 ppm</td>
</tr>
<tr>
<td>CO_{2}</td>
<td>0.5 vol.%</td>
</tr>
</tbody>
</table>

0.1 vol.%
Side constraints for the use of low concentrations are:

- Use absorption-free hose material
- Apply the test gas at the tip of the probe
- Use single gases, e.g. NO with nitrogen as the carrier gas
- Use the device “warmed up” (warm-up time at least 20 minutes)
- Zero with clean air after 20 minutes
- Maximum overpressure of the test gas: 30 hPa; better: unpressurised via bypass
- Pump flow in the unit ≥ 0.5 l/min
- Apply the test gas for at least 5 minutes

For adjustment in higher concentration ranges, a test gas whose concentration corresponds to about 25 - 30 % of the desired measuring range limit value is sufficient. Because of the greater strain on the sensors, adjustment at the limit value of the measuring range should only be carried out in exceptional cases.

Recommended gas components for mixed gases (e.g. for a fully-configured testo 350 XL):

1st bottle: CO + NO + N₂
2nd bottle: SO₂ + O₂ + N₂
3rd bottle: NO₂ + synthetic air
4th bottle: H₂S + synthetic air/N₂
5th bottle: CH₄/propane/butane + synthetic air

(Attention! For CₓHᵧ measurement on the pellistor principle there must be an O₂ content of > 2 % in the test gas).
The use of test gases containing O₂ has the following advantages (O₂ < 5%):

- The accuracy of the O₂ indication can be verified
- The leaktightness and plausibility of the indication can be checked
- Simulation of real flue gases.

Test gases with no O₂ content do not result in any damage to the electrochemical measuring cell because the oxygen required for electrochemical transformation is taken from the electrolyte of the cell. Nevertheless, the measuring cell requires fresh air phases at regular intervals for regeneration. That is why the test gas should not be applied for more than 5 minutes during gas control or gas adjustment. Rinsing with fresh ambient air should then be carried out.

4.5 Cross-sensitivity

a) Gas cross-sensitivity

When a single gas concentration is applied, it may happen that an additional sensor displays a value that is not in the test gas at all. In this case we speak of the cross-sensitivity or selectivity of a sensor. Multiple gas analysers such as the testo 350 take this situation into account by applying cross-sensitivity coefficients to the sensor signals and indicating them on the display. In addition, sensors with diffusion filters which prevent the interfering gas from penetrating into the sensor are used.

The testo 360 allows the user to carry out a special cross-sensitivity adjustment if an inadmissible cross-sensitivity is found (e.g. of CO on SO₂ measurement).

With all other devices this is done by the Testo Service department (if necessary).
b) Water vapour

Cross-sensitivities exist in some measuring processes, e.g. CO infrared measurement. This is not the case with electro-chemical measuring cells. Even with IR sensor technology, the effect on the gas components by the water vapour must be taken into account.

In practice, the test gas is not led through a hydraulic seal, since the influence remains within the tolerance of the unit.
5. Step by step - here, using the testo 350

Example: Control and adjustment of a CO module with test gas 1000 ppm/1.4 % O₂.

1. Switch the unit on and wait until the ON phase is over.
2. Connect the test gas to the analyser via the flue gas probe.

3. Open the test gas bottle and set the flow rate on the flowmeter to about 1.5 l/min.

4. Press the Start key to start the pump in the analyser. You may need to regulate the test gas volume again (watch the flowmeter).
5. Check the displayed value against the nominal value of the test gas.

6. To recalibrate, press the Book key in the “Sensors” menu and select —> o.k. —> “Recalibration” —> CO.

7. Enter the nominal value of the test gas.
8. **Start the recalibration**

Caution:
- Check the flow of test gas via the flowmeter regularly.
- Wait until the value is stable (approx. 3 minutes) before pressing OK.

Save the nominal/actual value (from software issued January 2003 on).

The analyser takes the nominal value as the actual value and saves it. Do a control check with another test gas if necessary.

The testo 350 M/XL saves the deviation from the nominal and actual value. This automatically created calibration protocol is printed out on the device’s internal printer.

9. **Shut off the supply of test gas and withdraw the gas tube (hose) from the analyser.**

10. **Rinse the analyser by pumping in fresh air for about 1-2 minutes.**
6. Troubleshooting

1. Gas adjustment in general not easily reproducible (indicated value is not correct, even after adjustment).

Possible causes:
- Adjustment was initiated before the value was stable.
- Adjustment conditions not identical with control conditions, sensors drifts too much or sensor is consumed.

Influences on the reproducibility of the gas adjustment:
- Test gas bottles used in adjustment different from those used in control
- Ambient temperature, device temperature
- Flow rate of measuring gas
- Pressure of the test gas at the gas inlet
- Pressure reducer/regulator causes pressure jolts
- Time when adjustment is initiated and value is read off in control
- Leakage in the entire gas route system
- Adjustment point outside the sensor measuring range or outside the sensor specification

Remedy:
- Rinse pressure reducer and hoses through if necessary
- Keep general influencing conditions stable
- Carry out a leak test before gas adjustment
- Do not change the test gas bottle between adjustment and control
- Note the sensor specification and Testo recommendation for test gas
- Replace sensors with significant drift
- If adjusting several sensors one after the other, you may need to rinse through between the individual test gas admissions (to avoid or minimise possible cross-sensitivity effects)
2. Long response times of NO₂, SO₂, H₂S

Causes:
Contaminated flue gas probe, probe tube, particle filter, gas cooler, ... damp particle filter. Flow rate or pump capacity too low (NO₂ is sensitive to flow rate). Components for admitting test gas made from material that distorts the test gas due to absorption effects (e.g. silicone tubing with NO₂ and SO₂). Hoses and test gas pipes too long and internal diameter unnecessarily large in the admission system.

Remedy:
Clean/dry the listed measuring system components or renew if necessary. To admit test gas use materials such as teflon and stainless steel (pressure reducer).

Keep hose and pipe lengths and internal diameter to a minimum. In general, the smaller all the volumes in the system, the more precise the gas calibration.

3. Excessive deviation from additional analyser

Causes:
Different adjustment gases used in the Testo device and the other unit.

Different cross-sensitivities when mixed gases are used.

Remedy:
Use the same test gases (measuring ranges should be similar). If possible, use test gases with only one component.
7. Flue gas analysers from Testo

Overview

<table>
<thead>
<tr>
<th>Measuring instrument</th>
<th>Control with test gas</th>
<th>Recalibration by the user</th>
</tr>
</thead>
<tbody>
<tr>
<td>testo 325-I X</td>
<td>X</td>
<td>by service centres</td>
</tr>
<tr>
<td>testo 300M-I X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>testo 300X-I X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>testo 350 M X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>testo 350 XL X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>testo 360 X X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>testo 325 M X</td>
<td>X</td>
<td>by service centres</td>
</tr>
<tr>
<td>testo 325 XL X</td>
<td>X</td>
<td>by service centres</td>
</tr>
<tr>
<td>testo 300 M X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>testo 300 XL X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>testo 300 XXL X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
The testo 325 M, the successor to the tried-and-tested testo 325-1, meets all the requirements governing the adjustment of furnaces for heating engineers, while the option of differential pressure measurement also helps the gas engineer in servicing operations.

TÜV for O₂, CO₂ and °C/°F

The TÜV-inspected testo 325 XL helps the heating engineer carry out control measurements. It meets all the requirements for the adjustment, servicing and maintenance of furnaces.

TÜV for O₂, CO₂, °C, °F and CO

- CO measuring ranges up to 4,000 ppm
- Two differential pressure measuring ranges
- Measured values output with date and time
- Memory for 20 measuring blocks (testo 325 XL)
testo 300 M/XL: The professional flue gas analyser

testo 300 M
With the testo 300 M, Testo has set a new standard in heating measurement. Its technical features help heating engineers carry out their day-to-day measuring tasks quickly, easily and reliably.

The device measures flue gas and ambient temperature, \(O_2 \), \(CO_2 \), \(CO \), draughts, differential pressure, excess air, flue gas loss and efficiency simply, accurately and in a matter of seconds. The measured values can be stored in the unit and transferred to the PC for further processing.

Particularly worth mentioning are the interchangeable measuring cells and batteries, enabling you to lower follow-on costs.

The ease of use of the testo 300 M also breaks new ground. The large, easy-to-read display gives you a complete overview of the measuring process.

The concept
The testo 300 M/XL analyser comes with an \(O_2 \) and a \(CO \) measuring cell as standard. The device can also be configured or retrofitted with an \(NO \) measuring cell as well. \(CO_2 \) content, flue gas loss, efficiency and excess air are calculated and appear immediately on the large, easy-to-read display. The testo 300 M/XL is also a high-end pressure measuring device. When combined with the practical hose connection set, it enables you to measure absolute and differential pressures quickly and accurately. The measuring cells are exchanged on site without test gas. You can easily replace the used measuring cells yourself. Thanks to the plug&play electronics, every measuring cell is immediately operational - saving you high servicing costs.

Wide variety of probes
Depending on the requirements at the place of measurement, flue gas probes with immersion depths of 180 mm, 300 mm and 700 mm for flue gas temperatures of up to +500 °C or up to +1,000 °C can be connected. Separate combustion air filters allow the combustion air temperature to be recorded parallel to measurement of the flue gas. Multi-hole probes, shaft wrap probes and surface probes are available for special applications.

Safety measurements
The testo 300 XL can also be used to carry out safety measurements. The \(CO \) content in the ambient air can be quickly checked by means of the \(CO \) ambient probe, while the gas leak search probe is used to track down leaking gas pipes.

Protection against condensation
A condensation trap integrated into the flue gas probe protects against condensation in the measuring device. The condensation trap is not sufficient for long-term measurements or for measurements in condensing furnaces and low-temperature systems and can be replaced by compact gas driers. This ensures that humid flue gas is reliably "dried". The top-of-the-range version automatically pumps the condensation away.

Measured value documentation

Printing: The Testo protocol printer allows the measured values to be transferred wirelessly by infrared. For the testo 300 XL we also offer a loss-proof plug-in printer.

Industry software: Data can also be analysed with the usual industry software.

Analysis software
For PC analysis of the data stored in the unit, the measured values can be processed on a WINDOWS® GUI by means of an RS232 interface and ECONOMICAL software.

Functions:
- Online measurement on the PC
- Load your list of descriptors into the measuring unit
- Export the measured values stored in the measuring unit for representation or protocolling on your PC as a histogram, table or number field
- Print out barcodes on self-adhesive labels

Integrated memory
The testo 300 M allows you to save all the measured values of up to 20 heating systems safely and rapidly. The testo 300 XL comes with a memory of 100 measurements which can be expanded to 400 measurements. That enables you to record large volumes of measurements even over several days.

Barcode pen (only for testo 300 XL)
The barcode pen allows you to enter the information quickly and reliably into the testo 300 XL. That means you can assign the measured values directly to the right customer numbers on site. The barcode is printed out on your customer card by means of industry software or on self-adhesive labels using Testo’s Economical software or industry software.

testo 300 XL
The testo 300 XL ensures that you are optimally equipped for every conceivable task when it comes to heating measurement. Safety measurements of the \(CO \) content in the ambient air are just as possible as tracking down leaking gas pipes. Measuring the differential temperature facilitates, e.g. the regulation of condensing furnaces.

The barcode pen allows measured values to be reliably assigned to the measuring point. Meanwhile, the loss-proof plug-in infrared printer improves the handling of the measuring unit.

The concept
The testo 300 M/XL analyser comes with an \(O_2 \) and a \(CO \) measuring cell as standard. The device can also be configured or retrofitted with an \(NO \) measuring cell as well. \(CO_2 \) content, flue gas loss, efficiency and excess air are calculated and appear immediately on the large, easy-to-read display. The testo 300 M/XL is also a high-end pressure measuring device. When combined with the practical hose connection set, it enables you to measure absolute and differential pressures quickly and accurately. The measuring cells are exchanged on site without test gas. You can easily replace the used measuring cells yourself. Thanks to the plug&play electronics, every measuring cell is immediately operational - saving you high servicing costs.

Wide variety of probes
Depending on the requirements at the place of measurement, flue gas probes with immersion depths of 180 mm, 300 mm and 700 mm for flue gas temperatures of up to +500 °C or up to +1,000 °C can be connected. Separate combustion air filters allow the combustion air temperature to be recorded parallel to measurement of the flue gas. Multi-hole probes, shaft wrap probes and surface probes are available for special applications.

Safety measurements
The testo 300 XL can also be used to carry out safety measurements. The \(CO \) content in the ambient air can be quickly checked by means of the \(CO \) ambient probe, while the gas leak search probe is used to track down leaking gas pipes.

Protection against condensation
A condensation trap integrated into the flue gas probe protects against condensation in the measuring device. The condensation trap is not sufficient for long-term measurements or for measurements in condensing furnaces and low-temperature systems and can be replaced by compact gas driers. This ensures that humid flue gas is reliably "dried". The top-of-the-range version automatically pumps the condensation away.
testo 300M/XL

Testo printer
Plug-in printer
Measured value documentation
Analysis software
Barcode pen

O_2, CO_2, CO, NO, °C/°F, hPa

ΔP, mbar

Measuring cell changing without test gas
testo 300XXL: Multifunctional flue gas analyser

Analyser box
suitable for handheld testo 300 XXL measuring unit for flue gas measurement in heating systems

Other advantages at a glance
- Automatic CO rinsing
- Measuring cell heating
- Integrated gas drier (optional)
- Integrated power pack
- Integrated condensation trap
- Fresh air rinsing without valve
- Connection to control unit (without cable)

Volume flow rate measurement with funnel
Monitors air extraction in closed rooms

Pressure measurement
- Adjusts nozzle pressure Δp
- Pre-/main inspection according to DVGW with alarm function
- Measures connection pressure

Temperature measurement
ΔT measurement via T1 and T2

CO safety measurement
Parallel ambient CO measurement protects from CO poisoning

Gas leak measurement
Gas leak search probe for efficient detection of leaking gas pipes

Indoor Air Quality
- %RH measurement
- CO$_2$ measurement

Analyser box parameters:
- Ambient temperature
- Flue gas temperature
- Flue draught
- O$_2$, CO$_2$ (calculated)
- CO
- NO (optional)
- NO$_2$ (optional)
testo 300XXL

Other advantages at a glance
- Integrated printer
- Touchscreen (optional)
- Integrated memory (400 measuring blocks)
- Software with database (address, boiler details, last year’s measurement)
- Many probes, indoor air quality
- Adjustable timer/clock for delta P

Handheld measuring unit

testo 300 XXL

for all measuring requirements of heating systems

Integrated printer
for documentation of the measured values on site

Display
6 parameters at a glance

Cable connection (helical conductor)
Handheld measuring unit/analyser box

RS232 interface
Data exchange with Testo or industry software

Control unit

8 freely assignable function keys
(4 virtual)

Power supply/ fast battery charge

Integrated differential pressure measurement

Freely assignable probe input

8 freely assignable function keys
(4 virtual)
testo 325-I: Single gas industrial analyser

The testo 325-I is the way into cost-effective flue gas measurement for CO, NO and SO₂. It combines precision with ease of use and low costs, making it the ideal partner for emissions checks and monitoring thermal processes. The measuring result is continuously displayed on the screen throughout the measuring process. The measured value along with the data and time are documented by the wireless Testo printer at the press of a button.

- Easy to operate and use, large display
- Easy replacement of measuring cells by the user on site
- Magnetic SoftCase protects the instrument from dirt and impacts
- Measured values output with date and time
- Power supply via battery or power pack

Adjustment of flue gas recovery for NOₓ reduction

Adjustment of gas-driven engines with the CO_{high} analyser
testo 325-I: 4 versions covering every application

<table>
<thead>
<tr>
<th>Version</th>
<th>Applications</th>
</tr>
</thead>
</table>
| **testo 325-I SO\textsubscript{2}** | • Check emissions of coal and heavy fuel stoves
| | • Monitor flue gas desulphurisation systems
| | • Process control in the glass and ceramics industry |
| **testo 325-I NO** | • Check emissions of engines and furnace chambers
| | • Check nitrogen removal systems/catalytic converters
| | • Adjust flue gas recovery for NO\textsubscript{x} reduction |
| **testo 325-I CO\textsubscript{low}** | • Check emissions and adjust gas burners
| | • Localise secondary air influxes in long flue gas channels |
| **testo 325-I CO\textsubscript{high}** | • Check the atmosphere of thermal processes in the manufacturing sector (tunnel furnaces, curing ovens, melt and annealing processes)
| | • Adjust process burners
| | • CO engine exhaust measurement for industrial trucks |
testo 300 M/XL-I: Industrial 3-gas analysers

The concept
The testo 300 M/XL-I analyser comes with an O₂ and CO measuring cell as standard. The device can also be configured or retrofitted with an NO or SO₂ measuring cell as well. The measuring cells are exchanged on site without test gas. An interesting option is integrated differential pressure measurement. This enables differential pressures to be recorded parallel to flue gas analysis. With the use of a pitot tube, the instrument directly displays the gas speed, volume flow rate and mass flows for CO, NO/SO₂. Any number of pitot tubes can be connected: all that needs to be done is to enter the relevant pitot tube factor.

Individual gas sampling probes
The gas sampling probes for the different sampling points can be selected in a variety of lengths and temperature ranges. For special requirements in the industrial sector, Testo offers a modular probe system that allows immersion depths of up to several metres and temperatures up to 1,700 °C to be realised.

Compact gas drier
Protection against condensation
In long-lasting measurements, it is essential to prevent condensation from getting into the measuring device and damaging it. That is why, to protect the instrument, the condensation trap in the sampling hose is simply replaced by a mini gas preparation that cools the flue gas down. The condensation is thereby trapped and pumped away automatically via the integrated hose pump.

Accurate SO₂ measurement
When SO₂ is measured, false measured values can be obtained due to the absorption of SO₂ in the condensation or in wet filters. The compact gas drier “dries” the flue gas, thereby guaranteeing accurate measured values, particularly when used in combination with the special hose for SO₂ measurement.

Measured value documentation
The Testo protocol printer or the plug-in printer for the XL-I is ideal for printing out the measured values. Data transfer is wireless by infrared in a radius of 2 m. The first three lines on the printout are freely programmable (e.g. address header). The plug-in printer also offers the option of printing out the company logo, automatic data checks and rapid data transfer via buffer memory.

Analysis software
For PC analysis of the data stored in the unit, the measured values can be processed on a WINDOWS® GUI by means of an RS232 interface and ECONOMICAL software.
Functions:
- Online measurement on the PC
- Measured values presented in a table, number field or bar chart
- Measured data printed out as a table or graph
- Device setting able to be entered
- Display of limit values
- Adjustment of the Y axis
Testo 300 M/XL-I

- Testo printer
- Plug-in printer
- Compact gas drier
- Measuring cell changing without test gas
- O_2, CO, NO, SO_2
- ΔP, mbar
- m/s, t/a
- °C/°F

Measured value documentation
testo 350: The world’s most advanced emission analyser

For portable use in industrial systems, the measuring instrument must be robust and as easy as possible to transport. Ideally, the unit will remain in its case during operation. A further problem comes with the distance between the gas sampling point and the burner (= place of measurement). That’s why the control unit in the testo 350 M/XL can be detached, enabling it to be used at distances of up to several hundred metres from the analyser box. While on the subject of gas preparation: from short spot measurement through to measurements lasting several hours, the use of a gas preparation in the industrial sector is a must. Only then can precise measurements, for example of NOx or SO2, be achieved, while the measuring instrument is also protected against aggressive condensation from the flue gas. Given the pressure on time, the reliability and guaranteed availability of the measuring instrument are very important for the user. This ensures that consumables such as measuring cells can be replaced on site by the user himself.

Design of the testo 350 M/XL system

The corresponding flue gas and flow probes as well as temperature probes are available for the different applications. Flue gas probes are available in lengths of up to 4 m, 1,700 °C and/or heated (to avoid condensation). There are temperature probes for surface, gas and fluid measurements. With flow probes, vane and hot-wire/hot-bulb probes can be connected to the control unit as well as the pitot tubes.
testo 350

The testo 350 is a flexible, portable measuring system that adapts to meet a wide range of requirements. The instrument can thus be used for:
- adjustments on all kinds of industrial burners
- recording concentrations of crude and pure gas over a long period of time
- monitoring atmospheres in process ovens of all kinds
- maintaining stationary engines such as cogeneration power stations
- verifying gas pressures and gas speeds both in flue gas and in air inlet ducts.

The entry-level testo 350 M consists of a control unit, analyser box and flue probe. It measures \(\text{O}_2 \), \(\text{CO} \), \(\text{NO} \) (optional), \(\text{NO}_2 \); \(\text{CO}_2 \) direct (optional), \(\text{SO}_2 \) (optional), (max. 4 measuring modules), temperature and differential pressure as well as the usual calculated variables of \(\text{CO}_2 \), \(\text{qA} \), etc.

The detachable control unit can also be employed as a stand-alone measuring instrument for temperature, flow rate, differential pressure, relative humidity etc. The measured values are documented with the integrated printer. The analyser box contains a complete Peltier gas preparation for the controlled disposal of condensation.

The additional features of the higher-spec testo 350 XL include the measuring parameters of NO and \(\text{NO}_2 \), a trigger input, a fresh air valve as well as the option of upgrading with 2 further measuring modules, e.g. \(\text{CO}_2 \) direct, \(\text{HC} \), \(\text{SO}_2 \) or \(\text{H}_2\text{S} \).

Features
- Mains-independent operation even with gas preparation (up to 2-3 h)
- Analyser box with data memory function even without the control unit
- Fast and simple operation via touchscreen (optional)
- Measuring range extension (optional) for CO
- The matching flue gas probe can be selected for each application
- Special gas sensors ensure extremely high accuracies in the lower range for CO and NO
- Low weight (approx. 4.5 kg) and small size mean easier handling
- Stable transport case allows use in tough environments

Analyser box
The analyser box is the “heart” of the analyser. In one housing are integrated:
- The relevant gas sensors and differential pressure measurement
- Measuring gas pump with flow rate monitoring
- Peltier gas preparation (with hose pump for condensation disposal)
- CO shut-off to protect the CO sensor
- Rechargeable NiMH battery (without memory effect)
- Integrated power pack (110/230 V, 50...60 Hz)
- Measurement data memory (1 MB)
- Options such as fresh-air valve (for lengthy measurements using the testo 350 M, standard in the XL)

Control unit
The control unit can control the entire system and read out the data. It is also a handheld measuring instrument for differential pressure (integrated) and has a further probe input for temperature, moisture, flow rate etc.

Other advantages:
- PC interface (RS232) for reading out data
- Illuminated graphic display
- Simple, menu-controlled operation with freely assignable function keys
- Integrated data memory (1 MB)
- Print out current or saved data
- Touchscreen operation (optional) for rapid operation and inputting
- Magnets on the rear to enable fixing at the place of measurement
- Robust housing with impact protection
- Power supply via analyser box with exchangeable battery unit or power pack

Control unit

Analyser box
testo 360: Portable multipurpose measuring instrument for industrial flue gases

Design and function
The testo 360 measuring system consists of the analyser box, a notebook and the flue gas probe. The analyser box contains all the sensors (maximum 7), facilities for flue gas humidity determination (optional), measuring range expansion (gas dilution, optional), flow measurement (optional) as well as a low-absorption gas preparation in Peltier cooling technology. The measuring gas is led through a heated hose from the sampling probe to the analyser box, where the measured values for the gas components are calculated. The signals for Δp, mbar, m/s and t/a also come from the flue gas probe or from separate probes. Additional parallel measuring signals can be integrated into the system via the external additional probe box (optional).

Design of the testo 360 system
The testo 360 is an efficient, universal gas analyser that meets the highest requirements when it comes to emissions and process measurements. Thanks to its compact size, the testo 360 can be easily transported in a car. It is suitable and approved for both transient single measurements and continuous measurements.

Features
- Fully comparable with stationary measuring technology with regard to accuracy
- All measuring parameters (see table) in one unit
- Long-lasting sensor stability, no test gas at the measuring location
- Integrated, low-absorption measuring gas preparation with Peltier cooler (patented)
- Can be used under extreme ambient conditions
- Programmable fresh air and test gas cycles for accurate measurements over several days
- Unsupervised data logger operation over several days and weeks
- Very large measuring ranges into the % range with high precision for smaller concentrations
- Very maintenance-friendly, low follow-on costs

Approvals and tests

Germany
Unrestricted suitability for systems of the 13th and 17th BImSchV [German legislation on emissions] and of TAL [industrial air requirements].

USA
Performance Specification for NOx, CO and O₂; Approved for NOx measurements in California.

Russia
Tested to GOS Standard for all measuring parameters.

Switzerland
Approved for official emissions measurements by the BUVAL.
8. Index

<table>
<thead>
<tr>
<th>Terms</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Absorption</td>
<td>7</td>
</tr>
<tr>
<td>Accuracies</td>
<td>20</td>
</tr>
<tr>
<td>Accuracy</td>
<td>6</td>
</tr>
<tr>
<td>Accuracy</td>
<td>15</td>
</tr>
<tr>
<td>Accuracy</td>
<td>19</td>
</tr>
<tr>
<td>Accuracy</td>
<td>20</td>
</tr>
<tr>
<td>Adjustment</td>
<td>6</td>
</tr>
<tr>
<td>Adjustment intervals</td>
<td>20</td>
</tr>
<tr>
<td>Adjustment report</td>
<td>16</td>
</tr>
<tr>
<td>Adsorption</td>
<td>7</td>
</tr>
<tr>
<td>Alignment</td>
<td>6</td>
</tr>
<tr>
<td>Ambient conditions</td>
<td>15</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>15</td>
</tr>
<tr>
<td>Analysis tolerance</td>
<td>9</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Bypass</td>
<td>14</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Calibration</td>
<td>6</td>
</tr>
<tr>
<td>Calibration report</td>
<td>27</td>
</tr>
<tr>
<td>Calibration reports</td>
<td>18</td>
</tr>
<tr>
<td>Carrier gas/basic gas</td>
<td>8</td>
</tr>
<tr>
<td>Certificate</td>
<td>9</td>
</tr>
<tr>
<td>Components</td>
<td>8</td>
</tr>
<tr>
<td>Content/concentration</td>
<td>8</td>
</tr>
<tr>
<td>Concentration ranges</td>
<td>22</td>
</tr>
<tr>
<td>Cross-sensitivities</td>
<td>15</td>
</tr>
<tr>
<td>Cross-sensitivities</td>
<td>29</td>
</tr>
<tr>
<td>Cross-sensitivity</td>
<td>7</td>
</tr>
<tr>
<td>Cross-sensitivity</td>
<td>23</td>
</tr>
<tr>
<td>Cross-sensitivity adjustment</td>
<td>15</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Detection limits</td>
<td>21</td>
</tr>
<tr>
<td>Deviation</td>
<td>6</td>
</tr>
<tr>
<td>Deviation</td>
<td>29</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Factory adjustment</td>
<td>18</td>
</tr>
<tr>
<td>Filling pressure and minimum pressure of use</td>
<td>9</td>
</tr>
<tr>
<td>Flowmeter</td>
<td>14</td>
</tr>
<tr>
<td>Flow rate</td>
<td>10</td>
</tr>
<tr>
<td>Fresh air rinsing</td>
<td>23</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Gas admission</td>
<td>14</td>
</tr>
<tr>
<td>Gas concentrations</td>
<td>21</td>
</tr>
<tr>
<td>Gas concentrations</td>
<td>22</td>
</tr>
<tr>
<td>Gas mixtures</td>
<td>8</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Hose materials</td>
<td>13</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Leakage</td>
<td>28</td>
</tr>
<tr>
<td>Leak test</td>
<td>14</td>
</tr>
<tr>
<td>Linearity</td>
<td>6</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Measuring range</td>
<td>7</td>
</tr>
<tr>
<td>Mixed gases</td>
<td>15</td>
</tr>
<tr>
<td>Mixtures</td>
<td>10</td>
</tr>
<tr>
<td>Multiple gases</td>
<td>8</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Nitrogen (N2)</td>
<td>8</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Oxidation</td>
<td>7</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Period of use</td>
<td>10</td>
</tr>
<tr>
<td>ppm</td>
<td>8</td>
</tr>
<tr>
<td>Pressure</td>
<td>8</td>
</tr>
<tr>
<td>Pressure</td>
<td>14</td>
</tr>
<tr>
<td>Pressure</td>
<td>28</td>
</tr>
<tr>
<td>Pressure reducer</td>
<td>13</td>
</tr>
<tr>
<td>Pressure regulator</td>
<td>13</td>
</tr>
<tr>
<td>Production tolerance</td>
<td>9</td>
</tr>
<tr>
<td>Letter</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>R</td>
<td>Reaction time</td>
</tr>
<tr>
<td></td>
<td>Readjustment</td>
</tr>
<tr>
<td></td>
<td>Recal</td>
</tr>
<tr>
<td></td>
<td>Recalibration</td>
</tr>
<tr>
<td></td>
<td>Reproducibility</td>
</tr>
<tr>
<td></td>
<td>Reproducibility</td>
</tr>
<tr>
<td></td>
<td>Response times</td>
</tr>
<tr>
<td>S</td>
<td>Safety advice</td>
</tr>
<tr>
<td></td>
<td>Sensitivity loss</td>
</tr>
<tr>
<td></td>
<td>Service centres</td>
</tr>
<tr>
<td></td>
<td>Single gases</td>
</tr>
<tr>
<td></td>
<td>Single-point readjustment</td>
</tr>
<tr>
<td></td>
<td>Slope adjustment</td>
</tr>
<tr>
<td></td>
<td>Slope/sensitivity</td>
</tr>
<tr>
<td></td>
<td>Slope value</td>
</tr>
<tr>
<td></td>
<td>Sources of supply</td>
</tr>
<tr>
<td></td>
<td>Specifications</td>
</tr>
<tr>
<td></td>
<td>Stability and period of use</td>
</tr>
<tr>
<td></td>
<td>Standardisation</td>
</tr>
<tr>
<td></td>
<td>Storage temperature</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td></td>
<td>Test gases</td>
</tr>
<tr>
<td></td>
<td>Test gas concentrations</td>
</tr>
<tr>
<td></td>
<td>Test gas concentrations</td>
</tr>
<tr>
<td></td>
<td>Test gas container (cylinder)</td>
</tr>
<tr>
<td></td>
<td>Threshold limit value</td>
</tr>
<tr>
<td></td>
<td>Traceability</td>
</tr>
<tr>
<td></td>
<td>Troubleshooting</td>
</tr>
<tr>
<td>V</td>
<td>Volume fraction</td>
</tr>
<tr>
<td>W</td>
<td>Warm-up time</td>
</tr>
<tr>
<td></td>
<td>Water vapour</td>
</tr>
<tr>
<td>Z</td>
<td>Zero point</td>
</tr>
<tr>
<td></td>
<td>Zero point</td>
</tr>
<tr>
<td></td>
<td>Zero point</td>
</tr>
</tbody>
</table>
9. Testo addresses

Please check www.testo.com for the contact details of your nearest Testo subsidiary or agent.
Copy model
You can copy this page as often as you like and return the completed copy by post or fax.

Suggestion for improvement / Request for product information

To:

Return address:
Name __
Department _______________________________________
Street ___
Postal code, city _________________________________
Telephone ____________________________
Fax ________________________________
Date, signature ____________________________

☐ I would like more information about the following products:
☐ testo 325-I ☐ testo 300 M/XL-I ☐ testo 350 M/XL ☐ testo 360
☐ testo 325 M/XL ☐ testo 300 M/XL ☐ testo 300 XXL

We are grateful for any suggestion for improvement that will help us keep this test gas guide up to date and adapt it to the requirements of the industry.

☐ I have the following suggestion for improvement:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
<th>Subject</th>
<th>Suggestion</th>
</tr>
</thead>
</table>

Field guide

Control and adjustment of portable flue gas analysers

With practical advice, tips and tricks